Введение
1 Предмет и методы вычислительной математики
2 Погрешности результатов численного решения задач
3 Решение алгебраических уравнений
4 Матрицы и системы линейных алгебраических уравнений
5 Решение систем нелинейных алгебраических уравнений
6 Интерполирование функций
7 Численное интегрирование
8 Численное решение дифференциальных уравнений
Заключение
Список используемой литературы
Часто возникает необходимость, как в самой математике, так и ее приложениях в разнообразных областях получать решения математических задач в числовой форме. (Для представления решения в графическом виде также требуется предварительно вычислять его значения.) При этом для многих задач известно только о существовании решения, но не существует конечной формулы, представляющей ее решение. Даже при наличии такой формулы ее использование для получения отдельных значений решения может оказаться неэффективным. Наконец, всегда существует необходимость решать и такие математические задачи, для которых строгие доказательства существования решения на данный момент отсутствуют. Во всех этих случаях используются методы приближенного, в первую очередь численного решения. Методы численного решения математических задач всегда составляли неотъемлемую часть математики и неизменно входили в содержание естественно- математического и инженерного образования.
Прогресс в развитии численных методов способствовал постоянному расширению сферы применения математики в других научных дисциплинах и прикладных разработках, откуда в свою очередь поступали запросы на решение новых проблем, стимулируя дальнейшее развитие вычислительной математики. Метод математического моделирования, основанный на построении и исследовании математических моделей различных объектов, процессов и явлений и получении информации о них из решения связанных с этими моделями математических задач, стал одним из основных способов исследования в так называемых точных науках.
1 Предмет и методы вычислительной математики
Вычислительная математика разрабатывает методы доведения до числового результата решений основных задач математического анализа, алгебры и геометрии. Численный метод решения задачи – это определённая последовательность операций над числами (вычислительный алгоритм). Языком численного метода являются числа и арифметические действия. Такая примитивность языка позволяет реализовать численные методы на компьютере, что делает эти методы мощным и универсальным инструментом исследования.
Однако задачи, подлежащие решению, формулируются обычно на математическом языке (языке уравнений, функций, производных, интегралов и т. п.). Поэтому разработка численного метода необходимо предполагает замену исходной задачи другой, близкой к ней, и сформулированной в терминах чисел и арифметических операций.
- Жидков Е.Н., Вычислительная математика, 2013.
- Пирумов У.Г. Численные методы.- М,: Издательство МАИ ,1998.
- Фаронов В. В. Turbo Pascal 7.0. Практика программирования. Учебное пособие. - М., «Нолидж», 1999.