Введение
- Назначение, область применения станка и его компоновка
- Режимы и силы резания
- Выбор типа и мощности электродвигателя привода главного движения
3.1. Описание конструкции и принципа работы двигателя
- Коробка скоростей
- Расчет передаточных отношений и числа зубьев шестеренных передач
- Динамический расчет элементов привода главного движения
6.1 Расчет КПД привода
6.2. Расчет зубчатых передач
6.3. Ориентировочный расчет диаметров валов
6.4. Выбор и расчет опор валов главного привода
6.5. Расчет других элементов передач (муфт, шпонок, шлицевых соединений)
- Шпиндельный узел
- Система смазки стан-ка
Заключение
Литература
Устойчивое, поступательное развитие народного хозяйства во многом определяется техническим прогрессом машиностроения. Для народного хозяйства необходимо увеличение выпуска продукции машиностроения и повышение ее качества. Этот рост осуществляется преимущественно за счет интенсификации производства на основе широкого использования достижений науки и техники, применения прогрессивных технологий Повышение эффективности производства возможно путем его автоматизации и механизации, оснащения высокопроизводительными станками с ЧПУ, промышленными роботами (ПР), создания гибких производственных систем (ГПС).
Технический прогресс в машиностроении характеризуется не только улучшением конструкций машин, но и непрерывным совершенствованием технологии их производства важно качественно, экономично и в заданные сроки с минимальными затратами живого и овеществленного труда изготовить машину
Отечественная Станко инструментальная промышленность создала высокопроизводительные станки различного технологического назначения и прогрессивные конструкции режущего инструмента, обеспечивающие высокую эффективность и точность обработки.
Вновь создаваемые станки должны быть общественно-целесообразными, технически и эстетически совершенными, экономичными. Известно, что один и тот же станок, отвечающий всем этим требованиям, может иметь различные кинематику, конструкцию, компоновку, форму. В свою очередь, станок определенного конструктивного решения может изготовляться при разном уровне организации производства, различными технологическими приемами и может иметь различное качество исполнения.
- Назначение, область применения станка и его компоновка
ИР500МФ4 многооперационный горизонтальный обрабатывающий центр - сверлильно-фрезерно-расточной станок с числовым программным управлением (ЧПУ), автоматической сменой инструмента (АСИ) и сменой обрабатываемых деталей предназначен для высокопроизводительной обработки корпусных деталей массой до 700 кг из конструкционных материалов от легких сплавов до высокопрочных сталей.
Широкий диапазон частоты вращения шпинделя и скоростей подач позволяет производить сверление, зенкерование, развертывание, растачивание точных отверстий, связанных координатами, фрезерование по контуру с линейной и круговой интерполяцией, нарезание резьбы метчиками.
Наличие поворотного стола, устанавливаемого с высокой точностью (±5 с через 5°), расширяет технологические возможности станка, позволяет обрабатывать соосные отверстия консольным инструментом.
Повышенная степень точности станка (класс П) обеспечивает обработку отверстий по 7, 8 квалитетам точности с шероховатостью поверхности Ra 2,5 мкм.
Высокая степень автоматизации вспомогательных функций станка включает автоматическую смену инструмента и обрабатываемых деталей, позволяет встраивать его в автоматическую линию с управлением от ЭВМ.
Все узлы станка смонтированы на жесткой Т-образной станине, которая является общим основанием.
Лобовая бесконсольная шпиндельная бабка расположена внутри портальной стойки.
Устройство автоматической смены инструмента с инструментальным магазином барабанного типа монтируется на верхнем торце стойки.
Все базовые детали имеют обребренную конструкцию и обеспечивают максимальную жесткость и виброустойчивость при высокопроизводительной обработке, гарантируют длительное сохранение точности.
Жесткий шпиндель с диаметром под передним подшипником 105 мм и конусом № 50 изготовлен из цементированной стали с высокой поверхностной твердостью (HRC 62). Шпиндель монтируется в отдельном корпусе на прецизионных роликовых и упорно-радиальном шариковом подшипниках, что обеспечивает оптимальную точность, жесткость и виброустойчивость.
Гидромеханическое устройство зажима инструмента в шпинделе гарантирует надежность и быстродействие крепления режущего инструмента с усилием 1250 кг.
Привод шпинделя станка осуществляется двухступенчатой коробкой скоростей от электродвигателя постоянного тока мощностью 14 кВт. В диапазоне 21 — 174 об/мин на шпинделе обеспечивается постоянный момент, а в диапазоне 182...3000 об/мин — постоянная мощность.
Автоматическая ориентация шпинделя с управлением от ЧПУ и механической фиксацией расширяет технологические возможности станка, позволяет производить целую серию технологических циклов, в которых необходимо отвести резец от рабочей поверхности, не повреждая изделие.
Перемещение подвижных узлов по осям X, У, Z осуществляется от высокомоментных электродвигателей с постоянными магнитами, которые через упругие муфты высокой жесткости непосредственно соединены с прецизионными шариковыми винтовыми парами, обладающими нагрузочной способностью, жесткостью и долговечностью.
Силовое удержание узлов при резании осуществляется следящим приводом, что исключает необходимость применения зажимных устройств.
Совершенные электроприводы подач обеспечивают постоянное (до 0,2 с) время разгона и торможения, а, следовательно, и минимальное время обработки запрограммированных перемещений.